

### Chimica Metallorganica e Catalisi Omogenea cf 6 When? Who knows?

#### What is?

Is the Thermodynamic and Kinetic Study of Metal sites bound to coordinated ligands made of organic fragments to activate towards further reactions

#### What for?

Is useful for fine comprehension of fixing elusive organic fragment; to explore Catalytic Mechanisms and

new catalysts, pharmaceuticals or new materials by finely modulating the tunable M-Ln system

Silvia Bordoni

#### We recall previously acquired inorganic concepts such as

- Crystal field theory versus molecular orbital theory
- LX ligand classifications
- We will learn

Definition: At least one M-C bond commonly Low-Valent Transition Metal but also Main Elements

- Electrons Counting
   to satisfy the inert gas rule → 18 electron rule of MLn systems
- Designation of Formal Oxidation State of Metal to estimate the real Metal d<sup>n</sup> electrons



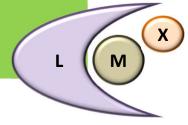
- Low valent metals → covalent binding
- Flexible Geometry (ruled by VSEPR but interligand attraction H-bonding or  $\pi$ - $\pi$  stacking)
- Multiple Oxidation States
- Acid-base behavior
- Synergistic effects (push-pull electron density)

#### Weak interactions

- Intramolecular bonding (agostic) M---H----C
- or Intermolecular M—H····H—O—C--M
- $H_2$ , sp<sup>3</sup> C-H, CO<sub>2</sub> activation



# Metal triggers the reactivity of the ligands devoted to important industrial Reactions in Processes as


Isomerization,
Hydrogenation,
Hydroformylation,
Acetic acid production,
Metathesis,
Oligomerization or Polymerization

Ambitious Targets are
Sustainable C-H activation of alkanes,
CO<sub>2</sub> activation,
use of C1 building block by using Lighter Metals,
as Nature does



## A question for you: in the contest of sustainibility Describe the nature for a desirable efficient catalyst:

- 1 Cheap,
   2 robust
   3 long-lived
   4 Low toxicity
- 5 Lewis Acid Metal Centre Lewis Base Ligands
- 6 At least one vacant coordinative unsaturation



- 7 multiple oxidation states
- 8 Flexible metal-based HOMO-LUMO frontier orbitals for energy and shape



Large ligands (Ln) are often used to stabilize coordinative (and electronic) unsaturation,

Necessary to make the catalyst reactive and fast reactive

M

**Ln bonds are binding M by a composed mixture of orbitals,** 

then M also use a

variety of orbitals

to bind a substrate S

to make it react with activated X



### Catalysis requires a responsive (reactive + adaptive) metal + ligands system

Frontier MOs (HOMO + LUMO) to M-Ln bonds

The substrate S may be activated causing umpolung = charge inversion

Organic alkenes are prone to electrophilic addition M-alkene is subjected by nucleophilic attack

Other topics will be
Metals in medicine (anticancer) or
Toxicology of metals thought as less harmful (Al or Se)



4 hours per week for 6 credits proposed with a blended methodology

**EXAM** 

2 different PPT slides presentations (MAX 12) and questions about

a SUBJECT treated in the CLASS
 a free choice RECENT RESEARCH PAPER

on Organometallic Chemistry selected along the proposed publications



```
For any questions
doubts
elucidations
or curiosity
about the program
```

please feel free of conctacting me writing by email address at

silvia.bordoni@unibo.it

